Osram Infrared LEDs Establish Communication Between Distributed Luminaires

Organic Response Lighting Control Systems are designed to operate wide area lighting installations with maximum energy efficiency while still maintaining a high level of comfort. The key lies in a distributed intelligence which enables the system to react to the presence of persons in the immediate vicinity, as well as to those further away. At the heart of the system are sensor nodes integrated in each luminaire. They comprise a motion sensor, an ambient light sensor and an infrared transmitter/receiver pair used for communication. The moment a sensor node detects occupancy, the luminaire reacts by putting out a predetermined light level. At the same time, it communicates that occupancy to its neighbors by emitting an infrared signal.

(Osram/ LEDinside)

Subsequently, the neighboring sensor nodes respond by setting their luminaire to a predetermined light level appropriate to an occupant in that vicinity. They then also simultaneously relay another infrared signal to their own neighbors, informing them there is an occupant two light fittings away. Ultimately, each sensor node “knows” how close a person is and sets the luminaire to an appropriate brightness. In this way, it is not just the spot the person is in that is illuminated, but also adjacent areas. This also eliminates the sensation of literally stepping into darkness when entering currently unoccupied spaces. Using light as a means of communication ensures that only luminaires within the person’s field of vision are turned on while systems in neighboring rooms, for instance, will not be triggered. In case an office is reorganized, newly positioned walls will automatically block the infrared signal and thus adapt the system response automatically to any adjustments.  

Osram's infrared LED ship (Osram/ LEDinside)

 

High-power infrared emitter with short switching times 

This solution addresses a broad range of applications of different scales and therefore requires high power infrared emitters. The infrared light signal must be set in a way that it reaches all of its immediate neighbors, but does not affect the units beyond. This operating distance first of all depends on the strength of the light signal. But it is also affected by ambient light conditions, the height of the ceiling and the reflectivity of the floor. Therefore, signal strength must be adjusted individually according to environmental and structural conditions. In contrast to lighting installation that require IDs assigned to each luminaire and which therefore need to be programmed, the organic response solution uses the adjustable range of the IR signal to address specific luminaires. It thus eliminates the need for programming during installation. 

The infrared (IR) LED Oslon SFH 4725S provides enough optical power to ensure communication for all possible set ups. The IR LED is based on stack technology, which was developed by Osram to provide one chip with two emission centers, thereby doubling its output. Driven at 1 Ampere, the SFH 4725S yields 990 milliwatts of optical power. Its narrow emission angle of ± 45° results in a radiant intensity of 425 mW/sr. The emitted light has a wavelength of 940 nanometers, which is completely invisible to human eyes but a perfect match for the spectral sensitivity of silicon photodetectors. The SFH 4725S features short rise and fall times of 10 and 15 nanoseconds, respectively, and thus permits modulated light signals.  

“We initially designed this emitter for infrared illumination and 3D camera applications. But with its high power, narrow emission angle and fast switching time it provides a great solution for optical communication, too,” says Dr. Jörg Heerlein, Marketing Manager Infrared at Osram Opto Semiconductors.  

Osram's high-power infrared emitter (Osram/ LEDinside)

Dean Campbell-Smith, Technical Director at Organic Response reports: “While developing our product, we evaluated a number of options for the infrared LED component. However, considering the trust associated with the brand and the strength of their IR LED product, we decided to go with Osram. In the end, it turned out to be an excellent decision for us as it allowed us to address the varying requirements of our clients. We have enjoyed ongoing product support from Osram and have always been pleased with their ability to deliver.” 

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Figure 1. Overall concept of face-fit surface-lighting micro-LEDs (FSLED) mask. a. Optical image of the FSLED mask showing uniform surface-lighting. schematic illustration of the FSLED mask. The 2D to 3D transformation procedure b. Difference ... READ MORE

The next generation of high-performance LEDs is now available: the OSCONIQ® C 3030 from ams OSRAM. Engineered for demanding outdoor and stadium lighting applications, this cutting-edge LED series combines exceptional intensity with thermal... READ MORE