Scientists Open a New Window into Quantum Physics with Superconductivity in LEDs

A team of University of Toronto physicists led by Alex Hayat has proposed a novel and efficient way to leverage the strange quantum physics phenomenon known as entanglement. The approach would involve combining light-emitting diodes (LEDs) with a superconductor to generate entangled photons and could open up a rich spectrum of new physics as well as devices for quantum technologies, including quantum computers and quantum communication.

Entanglement occurs when particles become correlated in pairs to predictably interact with each other regardless of how far apart they are. Measure the properties of one member of the entangled pair and you instantly know the properties of the other. It is one of the most perplexing aspects of quantum mechanics, leading Einstein to call it “spooky action at a distance.”

“A usual light source such as an LED emits photons randomly without any correlations,” explains Hayat, who is also a Global Scholar at the Canadian Institute for Advanced Research. “We’ve proved that generating entanglement between photons emitted from an LED can be achieved by adding another peculiar physical effect of superconductivity – a resistance-free electrical current in certain materials at low temperatures.”

This effect occurs when electrons are entangled in Cooper pairs – a phenomenon in which when one electron spins one way, the other will spin in the opposite direction. When a layer of such superconducting material is placed in close contact with a semiconductor LED structure, Cooper pairs are injected in to the LED, so that pairs of entangled electrons create entangled pairs of photons. The effect, however, turns out to work only in LEDs which use nanometre-thick active regions – quantum wells.

“Typically quantum properties show up on very small scales – an electron or an atom. Superconductivity allows quantum effects to show up on large scales – an electrical component or a whole circuit. This quantum behaviour can significantly enhance light emission in general, and entangled photon emission in particular,” Hayat said.

Other U of T team members are physicists Hae-Young Kee, Kenneth S. Burch and Aephraim M. Steinberg. The research was published in Physical Review B, an international journal specializing in condensed-matter phenomena and materials physics on March 10.

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

With up to 2000lm per LED, LUXEON 7070 delivers the power, efficacy and solution cost reductions luminaire manufacturers need   San Jose, CA – August 31, 2021 – More lumens, higher efficacy, and lower system costs are the... READ MORE

 - Osconiq E 2835 CRI 90 (QD) expands ams OSRAM's portfolio of lighting solutions that provide very high quality in a new mid-power LED. - In-house Quantum Dot technology ensures outstanding efficiency values of over 200 lm/W, even at... READ MORE