Production Issues Restrict Apple’s Sapphire Cover iPhone 6 Release, Analyzes LEDinside

Despite Apple’s plans of launching the iPhone 6 in late 2014, optical demands in handheld devices failed to generate price upticks in the sapphire substrate industry, according to LEDinside, a research subdivision of market-research organization TrendForce. 

Sapphire ingot, substrate and patterned sapphire substrate (PSS) prices have all dropped in July 2014, with some product prices down 5%-10% Quarter-on-Quarter (QoQ). The research organization noted optical demands lagged behind sapphire  manufacturers’ production expansion, and order volumes have fallen short of expectations. In the sapphire ingot industry, 2-inch ingot prices were down to US $3.5-$4.0, while 2-inch sapphire substrate prices were maintained at US $6.8-$7.2. Four-inch sapphire ingot prices also dropped to US $15-$16, while 4-inch sapphire substrate prices were about US $29-US $31. LEDinside, however, upheld a positive outlook for the sapphire industry performance in second half of 2014, pointing out a new wave of sapphire substrate orders could emerge if the iPhone 6 sales performance were good. 

The sapphire material is still being applied in new generation Apple smartphones camera lenses and fingerprint recognition readers. If the iPhone 6 keeps up Apple’s previous smartphone models hot selling record, sapphire demands will be driven by the smartphone’s applications till the end of this year. However, the much anticipated sapphire cover glass remains missing from the picture. Analysis of the iPhone 6 supply chain indicates related component suppliers have to start shipping products to OEMs for assembly in June 2014 to meet the September launch date. Yet, the research institute did not discover demands for smartphone cover glass. The sapphire glass version iPhone 6 will be issued in limited volumes this year, mostly because sapphire ingot manufacturers yield rates were lower than forecasts and issues involved in sapphire glass processing. 

Meanwhile, further observations will be required to determine whether Apple’s final iWatch will incorporate sapphire glass cover, said a LEDinside analyst, who declined to be identified. Since sapphire glass processing is relatively difficult, it would be problematic to mass produce sapphire watch cover glass if the iWatch is 2.5 D. Additionally, sapphire glass processing will become even more strenuous if the wearable device uses OLED panels. 

LEDinside 2014 Sapphire Substrate Market Report

Chapter I Sapphire Substrate Industry Overview 
Preview
1.1 Technology Development History of Sapphire Substrate Industry
1.2 Sapphire Substrate Production Process

Chapter II Discussion on Advanced technology of Sapphire Substrate Industry 
Preview
2.1 Mainstream Sapphire Ingot Technology
2.2 Mainstream Sapphire Substrate Technology
2.3 Mainstream Pattern Sapphire Substrate Technology
LEDinside reserves the right to change the content

Chapter III Discussion on Global Supply Chain Related to Sapphire Substrate 
Preview
3.1 Sapphire Substrate Materials Overview
3.2 Sapphire Crystal Growth Furnace Equipment Overview

Chapter IV Supply-side Analysis of Global Sapphire Substrate Industry 
Preview
4.1 Sapphire Substrate Industry Supply Chain Trend
4.2 Sapphire Ingot Manufacturer Capacity Overview
4.3 Sapphire Substrate Manufacturer Capacity Overview
4.4 Pattern Sapphire Substrate Manufacturer Capacity Overview
4.5 Major Manufacturer’s Business Performance and Market Development
4.6 Sapphire Manufacturer Business Strategies in LED and non-LED Markets
4.7 Sapphire Substrate Industry Sufficiency- Supply and Demand

Chapter V Global Sapphire Substrate Market Price Trend 
Preview
5.1 Sapphire Industry Price Trend Analysis- Ingot, CSS, and PSS
5.2 Sapphire Industry Long-term Price Forecast- Ingot

Chapter V Global Sapphire Substrate Market Price Trend 
Preview
5.1 Sapphire Industry Price Trend Analysis- Ingot, CSS, and PSS 
5.2 Sapphire Industry Long-term Price Forecast- Ingot

Chapter VI Analysis on Demand for Sapphire Substrate in LED Market      
Preview
6.1 LED Market Value and Volume Forecast
6.2 MOCVD Installation Volume Forecast 
6.3 2013~2018 Global LED Market Demand (Total Sapphire Volume and By Region) and Wafer Size Trend 
6.4 Chip Manufacturers' Sapphire Substrate and PSS Supply Chain 
6.5 LED Chip Manufacturer Revenue Ranking and Capacity Estimates 
6.6 Major LED Chip Manufacturer Profile 
6.7 Chip House PSS Introduction Rate and in-house PSS Production Rate 
6.8 Advanced LED Chip Technology 
6.9 LED Chip Price Trend
6.10 Cost Analysis of Sapphire Substrate in LED Chip 
6.11 Analysis on Advantages and Disadvantages of Four-inch and Six-inch Sapphire Substrates 
6.12 Alternative Materials of Sapphire Substrate in LED Application Market

Chapter VII Sapphire Substrate in Emerging Applications 
Preview
7.1 Window Film and Telecommunications Component Market and Technology Prospect

·         Sapphire Substrate in SOS Market Overview

·         SOS in RF IC and Sensor Application Market

·         With SOS Technology, UltraCMOS® Has Better Performance

·         SOS in CMOS Application- Peregrine

·         SOS To Be Replaced by SOI Due to Better C/P Ratio

·         Sapphire Substrate in Windows Film Market Overview

·         Sapphire Substrate in Windows Film Market Overview

·         Sapphire Substrate in Medium-Wave Infrared Windows Market Overview

7.2 Sapphire in Handset Device Market Outlook and Supply Chain Development

·         Sapphire in Smartphone Overview

·         Camera Lens: Sapphire Camera Lens in Smartphone

·         Home Button: Fingerprint Recognition Applications on Smart Phones

·         Sapphire Cover Glass Helps to Improve Capacitive Fingerprint Recognition System

·         Other Manufacturers Ramping

·         Camera Lens and Home Button Are the Major Application in 2014

·         Sapphire Cover Glass in Smartphone

·         Currently, Only a Few Companies Apply Sapphire As Cover Glass, There is Still a Long

·         Way to Go For Mass Production

·         APPLE Will Apply Sapphire to Protect Screen!

·         Why Does APPLE Need to Apply Sapphire to Protect Screen?

·         Challenges to Appear in Introducing Sapphire Screen that APPLE Has to Overcome
a. Increase Capacity: KY Method with Low Drilling Rate, GTAT and STC Methods are More Suitable for Square Panel for Sapphire Cover Glass 
b. Increase Capacity: GTAT’s ASF is Helpful Sapphire Cover Glass in Phones 
c. Reduce Cost Greatly: Sapphire Substrate Lamination Patent 
d. Reduce Cost: Cutting Technology and Lamination Patent Makes Sapphire Cover Glass to Be Achieved in Short Time 
e. Manage Supply Chain: Supply Chain Management: APPLE Ensures the Supply Source of Sapphire Ingot and Assures Quality, GTAT only Applies EMT’s Aluminium Trioxide 
f. Manage Supply Chain: Analysis on APPLE Aggressively Secure Sapphire Supply Chain

·         Phone Camera Lens and Home Button Supply Chain- iPhone 5S & 5C

·         Estimated Apple Shipment Schedule

·         How Sapphire Manufacturers Coordinate With Mobile Production Cycles Will Be a Major Test

7.3 Sapphire Substrates Market Value for Non-LED Applications 
 

·         Sapphire Substrates Market Value for Non-LED Applications: Demand Forecast of Sapphire Material in Window Film and Telecommunications Components Markets

·         Sapphire in Mobile Device Market has Growth Potential

·         Sapphire Demand Forecast in Mobile Application

·         Analysis of APPLE iWatch’s Sapphire Screen

·         The Increasing Proportion of Sapphire Substrate In All Kinds Of Non-LED Application: Handset Device Owns The Most Growth Potential

If you would like to know more details , please contact:

Joanne Wu    +886-2-7702-6888 ext. 972

joannewu@trendforce.com

Disclaimers of Warranties
1. The website does not warrant the following:
1.1 The services from the website meets your requirement;
1.2 The accuracy, completeness, or timeliness of the service;
1.3 The accuracy, reliability of conclusions drawn from using the service;
1.4 The accuracy, completeness, or timeliness, or security of any information that you download from the website
2. The services provided by the website is intended for your reference only. The website shall be not be responsible for investment decisions, damages, or other losses resulting from use of the website or the information contained therein<
Proprietary Rights
You may not reproduce, modify, create derivative works from, display, perform, publish, distribute, disseminate, broadcast or circulate to any third party, any materials contained on the services without the express prior written consent of the website or its legal owner.

Tokushima, Japan - 6 March 2024: Nichia, the world's largest LED manufacturer and inventor of the high-brightness blue and white LED, has started mass production of the new UV-B (308nm) and UV-A (330nm) LEDs in its popular 434 Series packa... READ MORE

New XLamp® S Line LEDs enhance growth, last longer, lower energy costs Horticulture and other forms of agricultural lighting require application-tuned ratios of spectral content, high efficacy and long lifetimes. Whether you are interested... READ MORE